813-RD-009-001

EOSDIS Core System Project

DADS Prototype Two
Multi-FSMS Product Integration
Evaluation

Subject to government approval and
not intended for general distribution.

November 1994

Hughes Applied Information Systems
Landover, Maryland

DADS Prototype Two Multi-FSMS
Product Integration Evaluation
for the ECS Project

November 1994

Prepared Under Contract NA S5-60000

APPROVED BY

Steve Fox /9/ 11/28/94

Steve Fox, SDPS Office Manager Date
EOSDIS Core System Project

Hughes Applied Information Systems
Landover, Maryland

813-RD-009-001

This page intentionally left blank.

813-RD-009-001

Preface

This document contains the prototype results report for DADS Prototype Two. This document is
submitted as required by the ECS Statement of Work, Section 3.3.3.3, and does not require
Government approval. The results of this prototype will also be documented in the Prototyping
and Studies Final Report (DID 333/DV3).

For additional technical information pertaining to this DADS Prototype, contact Tom Smith or
Chris Holmes, SDPS-DADS, at (301) 925-0647/(301) 925-0657 or on email at
tsmith@eos.hitc.com / cholmes@eos.hitc.com.

Questions concerning the control or distribution of this document should be addressed to:

Data Management Office

The ECS Project Office

Hughes Applied Information Systems
1616 McCormick Dr.

Landover, MD 20785

iii 813-RD-009-001

This page intentionally left blank.

iv 813-RD-009-001

Contents

11
1.2
1.3
14
15
1.6

3.1

41
4.2

5.1
5.2
5.3

54

Preface

1. Introduction

LAENETICAIION ...ttt n e 1-1
SUMIMIBIY ...ttt ettt s e e e s e e be e e abe e eae e e aae e e aseeeme e e ameeambeesaneeesneenbeeenneeanneennas 1-1
PUIMPOSE......otii e 1-1
L o] 0072 USSP U PP 1-1
Parent DOCUMENLeiiiieieiee ettt e e e e e sbe e sareesbeesneenneesnneens 1-2
APPHCADIE DOCUMENLS ...ttt nne e 1-2
2. Hardware Configuration
3. AMASS 4.2.1
PrOGUCE SUMIMEIY ...ttt nn b e n e 31
4. EpochServ 6.0.4
ProdUCE SUMMIBIY ...ttt bbb 4-1
EPOCh CONfIQUIELION ...ttt enee 4-2
5. Prototype Implementation
PrOtOLYPE DESION.. .ttt bbbt e ene e 5-1
FSMS SEIVEN DESIGN ..ccviieiiecie ettt et et e e be e be e sateesbeesneenreesnneens 51
[RS = V= g D 1= o o T 5-2
5.3 1 LSRRESPONSES......ccuiiueiiriitiiie ittt s 5-2
Problems with the PrototyPe...........ooeeiiee e 5-2

% 813-RD-009-001

5.5
5.6

6.1
6.2
6.3

7.1
1.2
7.3

3-1.
3-2.
4-1.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.

IS (] 00 [0701= o [0 TS 5-3
I R = 11 o RSSO 59

L= ATV 0 g I 0 11 = o] ORI 6-1
Prototype APPIrOBCN.oeieeeee e e 6-1
LSRR RESUITS.......vviieiccteie ettt e e e et e e s e sab b e e e s sbb e e e e e enbbeeesesbeeeessnnens 6-2

7. Problem & Resolution Summary

EPOCH ProBIEMS. ...ttt s 7-1
AMASS ProbIEBMS.......ociiiiceeee e e 7-2
AMASS POWES FaUIt TESLINGceueeiiiiiesiesiesiesiee et 7-6
Figures
Prototype 2 Organi ZatioN............cceeeueiiereeieseeseseesseesaeseesseessesseesseesseeseesseesesseessessnns 2-2
UNIX OS KErNEl & VS ...ttt st enne s 3-1
AMASS Organi ZALION........c.veeiieeiee et sae et e s e sae e e sa e e sreesseesreesnseesseesnseens 33
EPOCh OrganiZatioN..........ccveueeeeiecee ettt e st e eesneessennnens 4-3
LSR 500 KB File Retrievals- LEeVEl 1. 6-4
LSR500 KB File RetrievalS- LeVEl 2.........ooiiiiiieeeeee e 6-4
LSR 500 KB File Retrievals- LEVE 3.........ooo i 6-5
LSR 1 MB File RetrievalS- LeVE L ... 6-5
LSR 1 MB File R&trievalS- LEVEl 2.......c..ooviiiieeeeeeeee e 6-6
LSR 1 MB FileRetrievals- Level 3. 6-6
LSR 50 MB FileRetrievals- Level 1 ... 6-7
LSR 50 MB File RetrievalS- LeVE 2. 6-7
LSR 50 MB FileRetrievals- LeVEl 3. 6-8

vi 813-RD-009-001

5-1.
5-2.
5-3.

AMASS - Data DISIIDULION.ccieieeeieeieceese et se e enae e 5-4
Epoch HOSt - Data DisStribDULION..........ceeeieieicsierieseeeee e 5-6
Epoch Client - Data DiStribDULIONc.coouiiiecice e 5-8

Appendix A. Prototype Data Points

Abbreviations And Acronyms

Bibliography

vii 813-RD-009-001

This page intentionally left blank.

viii 813-RD-009-001

1. Introduction

1.1 Identification

This Data Archive and Distribution System (DADS) Prototype Two Results Report is prepared
for the Earth Observing System Data and Information Systems (EOSDIS) Core System (ECYS)
project, contract number NA S5-60000.

1.2 Summary

Prototype 2 has confirmed that multiple heterogeneous File Storage Management Systems
(FSMS) products can be used as components in a managed distributed data storage environment.
File requests can be routed to the appropriate FSMS via the use of a Universal Identifier (UID).
Router failures do not affect requests already in the appropriate FSM S request queue. Multiple
routers can be used to minimize the risk of total failure.

1.3 Purpose

The primary purpose of Prototype 2 isto functionally evaluate data retrievals in a heterogeneous
storage environment consisting of two or more storage product strings. The term string denotes a
complete system configuration consisting of a host, a data management product, and a tertiary
storage device. Two FSMS products were selected for use in this prototype: the Archival
Management and Storage System (AMASS) product from Advanced Archival Products and the
EpochServ product from Epoch Systems, an EMC2 Company.

The AMASS product consists of a separate file system that is closely connected to the UNIX File
System (UFS) via the Virtual File System (VFS) interface at the Unix kernel level. The
EpochServ product resides entirely within the UFS.

1.4 Approach
The prototype approach involves a three step process:

1. Store an appropriate amount of datainto each FSM S product to facilitate testing. Use this
opportunity to measure the native storage and retrieval capabilities of each FSMS product
in the prototype.

2. Test each product using commonly available access methods in Unix systems. These tests
included: Network File System (NFS), Remote Copy (RCP), and File Transfer Protocol
(FTP).

3. Create a Location Server/Request Router (LSR) software product to handle requests to
multiple FSMS products. Evaluate the viability and impacts of this approach.

1-1 813-RD-009-001

1.5 Parent Document
February 1993 ECS Statement of Work

1.6 Applicable Documents

The following documents are applicable to this document:

193-707-PP1-002 ECS Prototype Results Review, submitted December 1993
193-216-SE1-001 ECS Requirements Specification, submitted February 1994
193-317-DV1-001 ECS Prototyping and Studies Plan, submitted May 1993
193-318-DV 3-005 ECS Prototype and Studies Progress Report, submitted

November 1993

1-2 813-RD-009-001

2. Hardware Configuration

AMASS HOST:

OS VERSION:

DISK SPACE:

ROBOTIC UNIT:
CARTRIDGE FORMAT:
CARTRIDGE CAPACITY:
VOLUME CAPACITY:
TAPE TRANSPORTS:

DATA TRANSFER INTERFACE:

EPOCH HOST:
OS VERSION:
DISK SPACE:

EPOCH CLIENT:
OS VERSION:
DISK SPACE:

ROBOTIC UNIT:
CARTRIDGE FORMAT:
CARTRIDGE CAPACITY:
VOLUME CAPACITY:
TAPE TRANSPORTS:

DATA TRANSFER INTERFACE:

The following hardware configuration was used for Prototype 2.

HP 9000/800 E35
HP-UX A.09.04
4GB - AMASS Disk Cache 685 MB
Metrum RSS-48
19 mm SVHS - Helical Scan Magnetic Tape
48 Cartridges
18 GB/Cartridge (approximate)
2
SCSI-1

SUN SPARC 11
SunOS 4.1.3 U1
2.3GB
EpochServ Software & Directory Space 1.1 GB
Sun IPX
SunOS 4.1.3 U1l
933 MB
Epoch Client Software & Directory Space 189 MB
HP 20C
5.25in - Magneto Optical Disks
32 Cartridges
650 MB/Cartridge
2
SCsI-1

2-1 813-RD-009-001

LSR HOST: SGI Challenge XL (8 CPU)
OS VERSION: IRIX 5.2
DISK SPACE: 20 GB
™ s
HP 9000/ (Data)
Ethernet 800 E30 Scsil
gﬁéllenge Metrum
RSP-48
AMASS RS-237 S
(Commands)
SUN SPARC Il
SCSI
HP 20C
Epoch
Server
Sun IPX
Epoch
Client
/\V

Figure 2-1. Prototype 2 Organization

813-RD-009-001

3. AMASS 4.2.1

3.1 Product Summary

AMASS is a separate file system product that is attached to the UNIX Operating System (OS) at
the VFS of the OS kernel (See Figure 3-1). From the perspective of the OS, AMASS is another
UFS-like File System. All functions that work in the UFS will work in AMASS and all network
communications protocols available to the OS are available to AMASS. The product appears as a
endless UFS that isonly limited by the available tertiary storage.

INTRODUCTION TO THE KERNEL

user programs ~_

trap | libraries —

User Level
Kernel Level

—_ system call interface

file subsystem
\ inter-process

| process communication
—_— control
scheduler
buffer cache
| subsystem memory
management

character block

device drivers
|

hardware control

Hardware Level

hardware

Figure 3-1. UNIX OS Kernel & VFS

3-1 813-RD-009-001

AMASS is hierarchical in nature, but it is not a hierarchical storage system in the same way as
most Unix resident products. The directory structures for the AMASS file system are kept in a
RAIMA database (at this point, the formats for RAIMA are proprietary,) on disk (within UFS)
with periodic backups to tertiary storage. A transaction log, listing transactions since the last
backup, is also kept on disk to facilitate rapid file recovery in the event of system failure. Thereis
no Unix Index node (Inode) for each file managed by AMASS. The RAIMA database keeps
track of each file's Inode information as well asitslocation on tertiary storage. This data and other
associated per file data, forms the AMASS Master File Directory (MFD). AMASSfilesresidein
a separate file system that interfaces to the UFS viathe VFS layer. Thislayer alowsthe AMASS
file system to appear as a UNIX File System to users. Each Unix command is interpreted by the
AMASS software and a query is generated against the RAIMA database. This database provides
the necessary Unix Inode or file retrieval information to satisfy the query (e.g., Is, Is-I, cat, etc.).
Though Unix commands are used on specific data files, these files actually reside in the AMASS
cache area unlessthefileis specifically copied into the UFS.

A disk areais set aside exclusively to cache AMASS data. Datafiles are copied directly to tertiary
media either when the write operations to the cache are completed or in paralel. Thus, thereisno
migration in the traditional sense. Dataretrieval ison ablock or file basis with data staging on a
demand basis. Unix directories can be associated directly to specific storage devices or specific
storage volumes via links in the RAIMA database. This system of database links via physical
Unix Inodes has several advantages when dealing with tertiary storage. Files may be easily moved
between directories, and the file system is not limited by the Inodes available to the host file
system.

3-2 813-RD-009-001

Virtual File System Layer

UNIX
File
System

lusrlfile sysdb

pseudo
AMASS Inodes

Archival Management
:;Ii?etw ork and Storage System
System (AMASS)

Block Addressable

Disk cache

ATL

AMASS Tertiary Storage

Figure 3-2. AMASS Organization

3-3

813-RD-009-001

This page intentionally left blank.

3-4 813-RD-009-001

4. EpochServ 6.0.4

Epoch entered the mass storage market in 1989 with the Epoch-1 Infinite Storage Server. This
turnkey storage system consists of both server and storage hardware. The advent of Open
Systems drove the development of the Epoch-2 Data Server which is a fully integrated SPARC-
based network data server. A recent change in corporate philosophy has resulted in the EpochServ
product. Thisisafull function product based on the Epoch-2 software but it is Epoch hardware
independent.

4.1 Product Summary

EpochServ provides virtually infinite magnetic disk free space by transparently moving inactive
filesto tertiary storage. EpochServ migrates files automatically to tertiary storage based on system
administrator defined criteria. Staging is on a demand basis and is transparent to the user. The
product can function as a system server or as anetwork server.r Epoch isfollowing Open System
Standards. They are currently redesigning their software to remove required OS kernel
modifications. Thiswill streamline the product port process. Epoch currently offers the following
products:

Epoch Library Manager

Part of EpochServ. Controls allocation, scheduling, and tracking of all removable media for
tertiary optical disk and tape library units.

Epoch Migration Manager

Part of EpochServ. Manages the space on an EpochServ system's magnetic disks and provides
file migration among various levelsin the storage hierarchy.

Epoch Backup Manager

Part of EpochServ. Provides automatic, unattended, on-line backups of the server's files in the
storage hierarchy.

Epoch Migration Manager/MLS

A layered Epoch Migration Manager product that provides Multi-Level Staging (MLS) of files
from one type of tertiary storage to another.

Epoch Backup Manager/DR

A layered Epoch Backup Manager product that provides disaster recovery (DR) services for the
Epoch Backup Manager.

1Separate client code modules are required for this function.

4-1 813-RD-009-001

Epoch Migration/Client

A layered product that places client code on other network systems to allow file migration from
individual workstations and servers to and from an EpochServ central server. Provides client
machines with the appearance of an unlimited virtual disk system.

Epoch Backup/Client

A layered product that places client code on other network systems to extend EpochServ's backup
capabilities to individual workstations and servers across the network.

4.2 Epoch Configuration

EpochServ resides within the UFS. All Unix system commands are available to the EpochServ
user. Epoch also provides Epoch Specific extensions of UFS commands designed to work
specifically with the mass storage system (e.g., epls, epmount, etc.). EpochServ can be accessed
remotely via all UFS supported protocols or directly using the native file system and either the
UFS command set or enhanced EpochServ commands. EpochServ does not modify existing
fields in the Unix Inode. An unused field in the Inode is used to point to a separate flat file of
attributes kept for al files being managed by EpochServ. Thisfileis consulted for file access, file
migration, and backup and restore. The current Epoch system uses a concept called ‘wrappers' that
intercept commands that appear to be FSMS related at the kernel level. This approach is
cumbersome, difficult to port, and version dependent. EpochServ 6.1 will correct this problem by
making modifications to the NFS Daemon.

Each access, movement, or modification to a stored data file is recorded in log files, and the
appropriate indexes are updated in the attribute file. EpochServ has the concept of "Staging Trails'
which is used to group data from a particular file system onto specifically designated physical
volumes or devices. Files can be assigned to a staging trail based on an algorithm or via directory
structure associations. The software limits the maximum number of staging trails supported to
100. Performance begins to degrade at numbers above 20. The product does not support a Data
Class/Family of Files concept. EpochServ uses the Mass Storage Reference Model (MSRM) as
one of the factorsinitsdesign. The equivalent of an MFD exists and can be examined and edited
by the system administrator. EpochServ does not provide external naming services for bitfiles.

Each volume in EpochServ is electronically labeled by the system. Thislabel is aways checked
prior to any Read/Write (R/W) operation. EpochServ transparently moves files from on-line to
tertiary storage and vice versa. EpochServ uses three storage watermarks for efficient storage
utilization: Pre-Stage Water Mark (PSWM), Low Water Mark (LWM), and High Watermark
(HWM). EpochServ creates a candidate list of files that can be migrated. Candidate files are pre-
staged to tertiary storage but their image remains on magnetic disk in the PSWM area. When
utilization reaches the HWM, filesin the PSWM are deleted from on-line storage.

4-2 813-RD-009-001

[(root)

Ivar lusr /home /dev
/adm | | | |
lepoch /tmp /etc lisa /epoch
/adm /backup_catalogs tmp /crash

/bin /classl /internal /man /epingres /ISMDIR /kvm /lib Jetc /include /install /src

Figure 4-1. Epoch Organization

4-3 813-RD-009-001

This page intentionally left blank.

4-4 813-RD-009-001

5. Prototype Implementation

The primary goal for the prototype was to prove that multiple FSM S products in a heterogeneous
environment could be accessed independently without data or request lossin atimely manner. The
method selected to prove this concept was the development of an LSR, which provided asingle
point of access to successfully route requests for data to the correct FSMS in the heterogeneous
architecture. Each FSMS needed to receive and process multiple simultaneous requests, retrieve
the files from their data stores, and transfer the resultant files to the host specified in the request.
The LSR itself could not be a single point of failure; if the LSR went down for some reason,
processing for data already requested must be able to continue and another L SR process (possibly
on a different machine) must be able to continue where the last one left off. For this prototype
only one LSR host was used. Thiswas an Silicon Graphics, Inc. (SGI) Challenge (IRIX System
V.5.2) running the custom LSR code. Two FSM S hosts were connected via sockets to the L SR.

5.1 Prototype Design

The prototype design incorporated the primary goal of FSMS heterogeneity as well as the
secondary goal of not creating a single point of failure in the file retrieval and request routing
mechanisms. The tertiary goal was to minimize custom software complexity by placing file
retrieval management responsibilities on the individual FSMS products. The prototype design
allowed each FSMS to run simultaneous requests and allowed each one to be connected to
multiple LSRs. A universal fileidentifier was used so that the LSR could easily determine which
FSMSwas serving afile.

The FSMS products selected for this prototype included the AMASS product and an Epoch
Migration Client aswell as an Epoch Host. The epoch client added an additional level of staging
and migration which was used to better examine a heterogeneous distributed storage environment.

5.2 FSMS Server Design

The FSM S Server code ran on each machine that hosted an FSMS. The main process would open
a socket on a well known endpoint and listen for requests for connection. This process is the
FSM S connection server. When arequest for a connection came in, the main process executed a
fork(). The parent process closed its connection to the requester and again listened for more
connection requests. The child process was then allowed to interact with the requester to service
requests. Thisprocessisthe FSMS server for aparticular LSR. By keeping an FSM S connection
server up al the time, it allowed multiple LSRs to connect to the server. If an LSR went down,
another L SR could connect (or possibly already be connected) and software above the LSR could
re-route the requests to one that was operational.

The process servicing the request would first tell the host what type of FSMS it was and what UID
stubsthat it was serving. The host would then tell the FSMSits hostname. After this processing,
the FSMS simply waited for file requests from its LSR. When a request for a file came, the
FSMS again executed afork(). The parent process went back to waiting for more requests from

51 813-RD-009-001

its LSR and the child process retrieved the file requested and transferred it, via FTP, to the host
specified. This allowed multiple simultaneous requests that would continue if the LSR went
down.

5.3 LSR Server Design

The LSR Server used a host setup file that listed all of the possible FSMS Server hosts. It read
each server entry and attempted to connect to the well known endpoint. If the connection was
successful, it asked the FSMS server what type of FSMS and which UID it was serving. It also
told the FSM S its hostname so that the FSM S knew where to send the files. Thisinformation was
put in atable for use by the router. The entire host setup file was read until each host was tried and
all of the hosts that responded were put in the router table.

When arequest came in (in this case, was entered by the keyboard), the router table was checked
to seeif the UID specified was being served by any of the available FSMSs. If it was, the request
was sent over the socket to the appropriate FSM S server. If not, an error was posted to the log and
the user (in this case, the terminal). The LSR Server would not wait for a response from the
FSMSS server, but would continue processing subsequent requests.

5.3.1 LSR Responses

Responses to the LSR were handled by a separate process that simply polled a well known
directory (in this case, /tmp/tool) for filesthat fit the UID scheme. When it found afile, it put an
entry in the log and deleted the file. This was considered a response from the FSMS server. In
order to not risk hanging an FTP session, the FTP process on the FSM S server would transfer the
file under anon-UID name and at the end of the transfer, rename thefile to itsoriginal name. This
way, no partially transferred files would be deleted.

5.4 Problems with the Prototype

Several problems inherent in the prototype design were found, mostly focused on the fork() call
and how it interacted with waiting processes.

First, when a process does afork() call, it associated the child process with the parent process. In
the first version of the tool, when a child process attempted to die, via the exit() call, it would
almost invariable do it when the parent was waiting on a socket for another request. The OS
would not allow the child to die without notifying the parent, so the process table started filling
with defunct processes. After awhile, the host machine could no longer create any processes, and
the FSM S server was basically dead. To alleviate this condition, the signal () command was used
so that the parent process would ignore the SIG_CHLD signal. On the Hewlett Packard (HP), all
of the defunct processes disappeared and there was no longer a problem of running out of
processes, but this did not help under the SunOS. Other attempts were made to clean up this
problem on the Sun, but the problem would not go away completely. The defunct processes did
die after awhile and the server never went down due to the limited number of processes (actually,
it never went down at all), so the problem was ignored for now.

5-2 813-RD-009-001

The second problem was a little harder to quantify, and there was not sufficient time to fully
investigate. It seemed that some of the child processes would not continue processing if the parent
process was waiting for something. Not all of the child processes in a batch would do this. This
behavior was observed on both platforms. For testing, five requests would be sent to each FSMS
connected and the requester would wait for a period of time before sending more, allowing the
FSMS to service the requests and be ready for more. But, on the HP, usually three of the
processes would complete and the other two would wait until more requests came in. It did not
seem to matter how long the requester waited, the last two were always slow. It also seemed that
when the main processes were killed (for arestart), all of the child processes would finish very
quickly.

5.5 Testing Procedure

Files were created in several sizes, each in a common pattern. The first longword of each file
contained the file size and every longword after that contained along integer counting up from 2 to
the size of the file. This allowed very easy checking of files coming out of the archives for
validity.

Each file was created on a staging area and then copied into the disk area controlled by the FSMS
on that system. For the Epoch systems, an epst age command was issued to stage the file to the
optical disk and this command was timed, and this time was posted in the data (representing a
system response for afile size). Due to the nature of AMASS, the Unix copy (cp) was timed.
Also, for AMASS, since there is so much caching, we had to run a much larger amount of data
through to counteract the cache. With enough data running through to bog down the cache, we
could get a better idea of a system throughput. Each store request was synchronous and there
were no other users on the system.

Each file was put into a specific directory, each directory having a keyword associated with it to
facilitate aUID. Three (Epoch) or four (AMASS) directory levels were used to test the response
time for different transfer mechanisms according to how far down in a directory tree they were.
The directories were maintained by file size; there was a root directory which had subdirectories
for all the level onefiles, and each of these subdirectories were the root for the level two files of the
same size and so on.

The retrieve times for native, RCP, NFS, and FTP were also tested synchronously. Each request
for afile (on Epoch, a Epoch Bulk Stage In (epbsi) wasissued; on AMASS, aUnix cp was
issued) was the only request active on the FSM'S and each request was timed. This allowed usto
baseline the performance of each approach and compare them against one another. Unfortunately,
this number does not reflect a quiescent network. The prototype equipment was placed on the
same network segment as the majority of the Landover equipment. This created some significant
disparities between data readings. Thisis particularly true of individual data points used for the
averages (See Appendix A) and of network file movement (i.e., FTP, NFS, RCP).

5-3 813-RD-009-001

Table 5-1. AMASS - Data Distribution (1 of 2)

Directory Level 1 Directory Level 2 Directory Level 3 Directory Level 4
files avg time | files avg time | files avg time | files avg time
(sec) (sec) (sec) (sec)

64K

Number Archived: 15000 1000 1000 1000

Number Retrieved:
Native: 2000 0.55 1000 0.46 1000 0.97 1000 0.38
FTP: 1000 1.41 500 1.25 500 1.62 500 1.23
NFS: 1000 2.22 500 0.47 500 0.95 500 0.48
RCP: 1000 151 500 1.45 500 1.85 500 1.47

100K

Number Archived: 15000 1000 1000 1000

Number Retrieved:
Native: 1500 0.72 1000 1.83 1000 0.58 1000 0.59
FTP: 0 0 0 0 0 0 0 0
NFS: 1000 4.46 500 1.97 250 0.69 250 0.67
RCP: 1000 2.17 500 2.82 250 1.57 250 1.53

500K

Number Archived: 5000 250 500 500

Number Retrieved:
Native: 1000 1.68 150 1.31 500 1.49 500 1.57
FTP: 1000 2.41 50 2.27 50 9.17 50 9.10
NFS: 1000 2.38 50 2.49 50 7.97 50 7.73
RCP: 1000 2.73 50 2.72 50 10.04 50 10.55

1M

Number Archived: 3500 250 250 250

Number Retrieved:
Native: 800 3.17 250 29.56 250 2.69 250 2.73
FTP: 1000 3.55 50 28.84 50 3.71 50 4.43
NFS: 1000 3.34 50 28.35 50 4.29 50 4.22
RCP: 1000 3.88 50 29.71 50 3.95 50 4.05

5-4 813-RD-009-001

Table 5-1. AMASS - Data Distribution (2 of 2)

Directory Level 1 Directory Level 2 Directory Level 3 Directory Level 4
files avg time | files avg time | files avg time | files avg time
(sec) (sec) (sec) (sec)

50M

Number Archived: 200 20 10 10

Number Retrieved:
Native: 250 88.82 10 142.28 10 149.05 10 146.74
FTP: 25 183.88 5 165.73 5 165.46 5 160.57
NFS: 25 218.83 5 212.51 5 202.46 5 201.11
RCP: 25 200.84 5 174.74 5 169.18 5 161.05

100M

Number Archived: 100 10 10 10

Number Retrieved:
Native: 300 177.73 10 239.68 10 234.05 10 241.00
FTP: 50 294.38 5 334.54 5 349.06 5 323.47
NFS: 25 381.33 5 348.63 5 339.96 5 330.81
RCP: 50 289.01 5 330.72 5 323.91 5 327.39

500M

Number Archived: 10 10 10 10

Number Retrieved:
Native: 10 953.61 6 850.07 10 940.61 10 964.46
FTP: 6 1281.52 5 1216.52 5 1243.97 4 1213.26
NFS: 5 1526.14 5 1479.61 5 1486.69 4 1532.08
RCP: 5 1488.20 5 1446.53 5 1422.46 5 1365.44

1G

Number Archived: 10 10 10 10

Number Retrieved:
Native: 13 1884.99 10 1885.86 10 1865.74 10 1881.16
FTP: 5 2399.62 3 2373.15 3 2333.68 3 2582.84
NFS: 5 3317.59 3 3556.15 3 2920.43 3 3049.20
RCP: 5 2561.73 3 2529.45 3 2502.62 3 2644.24

Total Files 46,950

5-5 813-RD-009-001

Table 5-2.

Epoch Host - Data Distribution (1 of 2)

Directory Level 1 Directory Level 2 Directory Level 3
files avg time files avg time | files avg time
(sec) (sec) (sec)

64K

Number Archived: 1000 1000 1000

Number Retrieved:
Native: 1000 0.66 900 0.84 900 0.89
FTP: 0 0 0 0 0 0
NFS: 1000 0.36 1000 0.44 1000 0.44
RCP: 0 0 50 2.17 50 1.89

100K

Number Archived: 1000 500 500

Number Retrieved:
Native: 1000 0.93 500 1.27 500 1.07
FTP: 0 0 0 0 0 0
NFS: 1000 0.67 500 0.68 500 0.69
RCP: 100 2.03 50 2.03 50 2.33

500K

Number Archived: 500 200 50

Number Retrieved:
Native: 500 2.46 200 1.81 50 2.44
FTP: 100 4.84 100 4.34 25 4.80
NFS: 500 1.98 200 2.04 50 2.09
RCP: 100 3.17 25 3.28 25 3.31

iM

Number Archived: 50 20

Number Retrieved:
Native: 50 4,18 20 3.51 20 4.17
FTP: 25 7.75 10 8.66 10 7.74
NFS: 50 3.25 20 3.89 20 3.52
RCP: 25 4.43 10 7.34 10 5.46

5-6

813-RD-009-001

Table 5-2.

Epoch Host - Data Distribution (2 of 2)

Directory Level 1 Directory Level 2 Directory Level 3
files avg time files avg time | files avg time
(sec) (sec) (sec)
50M
Number Archived: 10 5 5
Number Retrieved:
Native: 10 122.43 5 104.47 5 131.73
FTP: 5 275.49 3 259.91 3 294.58
NFS: 10 121.54 5 120.99 5 123.70
RCP: 5 112.58 5 109.44 5 107.73
100M
Number Archived: 10 5 5
Number Retrieved:
Native: 10 264.01 5 267.12 5 259.68
FTP: 5 551.79 5 346.05 3 555.48
NFS: 17 235.28 5 235.51 5 245.39
RCP: 6 221.91 209.13 5 188.94
500M
Number Archived: 4 4 2
Number Retrieved:
Native: 4 1052.84 4 1051.11 2 750.98
FTP: 4 2213.84 4 2205.46 2 2172.53
NFS: 4 916.88 2 925.86 2 908.52
RCP: 3 811.66 2 922.79 2 941.93
Total Host Files 5,890 (Limited by Secondary & Tertiary Storage Capacity)

S-7

813-RD-009-001

Table 5-3.

Epoch Client - Data Distribution (1 of 2)

Directory Level 1 Directory Level 2 Directory Level 3
files avg time | files avg time | files avg time
(sec) (sec) (sec)

64K

Number Archived: 1000 1000 1000

Number Retrieved:
Native: 1000 1.03 900 1.05 600 1.11
FTP: 0 0 0 0 0 0
NFS: 1000 0.78 1000 1.03 1000 0.79
RCP: 0 0 0 0 0 0

100K

Number Archived: 1000 1000 1000

Number Retrieved:
Native: 1000 1.50 1000 1.50 1000 1.46
FTP: 0 0 0 0 0 0
NFS: 1000 1.25 500 1.16 500 1.14
RCP: 0 0 0 0 0 0

500K

Number Archived: 500 500 500

Number Retrieved:

Native: 500 3.69 200 4.09 50 4.59
FTP: 150 5.78 100 5.55 100 6.11
NFS: 500 3.59 200 3.36 50 3.37
RCP: 150 4,76 150 5.34 150 4.57

iM

Number Archived: 50 20 20

Number Retrieved:
Native: 50 5.32 20 5.51 20 5.70
FTP: 25 8.78 10 9.44 10 9.37
NFS: 50 5.63 20 5.59 20 5.72
RCP: 25 6.58 10 7.01 10 7.01

5-8

813-RD-009-001

Table 5-3. Epoch Client - Data Distribution (2 of 2)

Directory Level 1 Directory Level 2 Directory Level 3
files avg time | files avg time | files avg time
(sec) (sec) (sec)
50M
Number Archived: 5 5 5
Number Retrieved:
Native: 10 208.67 5 230.52 5 216.01
FTP: 5 346.05 3 351.39 3 357.96
NFS: 10 211.49 5 227.76 5 217.21
RCP: 5 211.16 3 218.723 3 217.50
Total Client Files 7,625 (Limited by Secondary & Tertiary Storage Capacity)

5.6 LSR Testing

The data collected for the LSR portion was collected under a simulated system load of five (5)
activerequests. The LSR host (SGI Challenge) would send five requests to each FSM'S connected
(the Epoch Host and the AMASS servers) and then wait for a period of time to let the requests
complete. Once the wait time expired, another batch of requests was sent. The files were
transferred from the FSM S machines to the LSR host via FTP. A separate polling process ran
every 5 seconds and checked a well known directory (/tmp/tool) for files which had names that
matched a system UID. When afile was found, it was logged and then deleted. To get the times
for retrieval, the logs had to be edited and the requests matched up with the responses. A tool for
doing this was not written due to the small volume of data used.

813-RD-009-001

This page intentionally left blank.

5-10 813-RD-009-001

6. Conclusions

6.1 Network Limitations

Before stating the conclusions of this prototype, something must be said about the network
environment. The Prototype 2 equipment used the same Local Area Network (LAN) segment 31
as the ECS servers and other equipment at Landover. Unlike Prototype 1 which relied on Federal
Information Processing Standard (FIPS) for data transfers, Prototype 2 utilized Segment 31 for
both control and data traffic. This caused significant performance degradation during specific
periods on most days.

It was not possible to quantify the impact of this non-prototype LAN traffic on individual data
samples. In an effort to reduce or eliminate the impact of this extraneous traffic, a larger number
of data samples were collected and average transfer rates were used.

6.2 Prototype Approach

Several methods of managing a heterogeneous storage space were described in the Multi-FSM S
White Paper. Most of these were deemed inappropriate for large search spaces due to the
following:

1. Routing each request to each FSM S became impractical as the number of requests grew
large. Only one FSM S held the requested file but each FSM S product searched for it. All
but one of these searches ended in failure. In addition, while searching for afile that did
not exist, the various FSM S products were not be able to service "legitimate” requests.

2. A biased search path and/or partitioning FSM S products by data set, was also inefficient as
the search space grew large. Ingested data was stored to maximize retrieval efficiency
based on anticipated access patterns and retrieval time constraints. Thisresulted in portions
of the data sets overlapping multiple FSMS products and storage devices. In addition,
some access patterns resulted in data file and/or data set movement from one data server to
another. Thus, over time, a partitioning scheme would no longer represent the actual
distribution of the data. Likewise, a very complex biasing scheme would be required to
manage each data server.

3. Remote mounting all FSMS products via a NFS remained as a viable implementation
method. This method did, however, suffer from inefficiencies due to server overhead
particularly as the number of users grew large. There were also physical scaleability
concerns. Both of these issues will be examined in greater detail in future prototypes.

The LSR approach was selected for this prototype. This method appeared to offer the most
flexibility and fault tolerance. The LSR was implemented as a replicatable software module
designed to identify file locations and route requests to the appropriate Data Server. In this case,
the AMASS product resided on Data Server One and the EpochServ product resided on Data

6-1 813-RD-009-001

Server Two. The file location was determined using a UID. The UID for each file consisted of
the following:

Data Server ID D1 =AMASS, D2 = EpochServ
(For this Prototype)
FSMSID (A data Server can consist of AM = AMASS, ES = EpochServ
multiple FSM S products)
Directory XXX - Three Characters Mapped to a Table
File Number 12345 - Five Numerals
File Extension XXX - Three Characters Denoting File Type

The UID concept is used at several Distributed Active Archive Centers (DAACS) and was initially
a concept targeted for ECS. UIDs will probably not be used in the future Version 1 ECS due to
their limiting nature. As files migrate between data servers based on access profiles, UIDs will
becomeinefficient. A database of file locations or some form of global name space manager will
present amore scaleable and evolvable solution. Neither of these methods were specifically tested
in Prototype 2 due to time constraints. They will be tested in future prototypes.

6.3 LSR Results

The LSR received file requests, translated them to the appropriate FSM S format, and routed the
request to the appropriate data server with areturn destination specified for the requested file. At
this point, the individual FSM S product became responsible for handling the request. The LSR
did not require specific acknowledgments from either the data server or the requester. Thus, a
failure of the LSR would not result in the loss of previoudly transmitted requests. Multiple LSR
modules could run simultaneoudly allowing failover.

Each series of requests was performed on an ordered set of data to minimize seek times between
files. The requestsfor each directory level within each file size group were performed in a serial
manner with little or no latency time. The host computers were not modified or rebooted for the
duration of these tests.

In general, the LSR module worked very well and added a negligible amount of overhead to the
overal request time. Unfortunately, the prototype suffered from implementation problems such
as. 1) the disk space and other equipment constraints limited the number of files and file sizes
stored and retrieved and 2) the Distributed Computing Environment (DCE) was not used for this
prototype which resulted in a socket-based test tool design rather than a design using DCE-based
Remote Procedure Calls (RPCs).

The socket-based implementation (described in Section 5) required spawning multiple child
processes via Unix. Both host systemsinitially developed problems as the file size and hence the
duration of each request increased and as the time between requests was reduced. This problem
was corrected, for the most part, on the EpochServ Host (SunOS 4.1.3_U1) by modifying the
method of managing child process communications. Unfortunately, the test team was unable to
correct this problem on the AMASS Host (HP-UX A.09.04).

6-2 813-RD-009-001

The process spawn problem on the HP manifested itself in two ways. 1) in some cases, a child
process could not be spawned and resulted in no data point for a particular request and 2) in other
cases, a request would complete, but some spawned processes would be suspended until
additional requests entered the system. Thisis most evident in the 50 MB fileretrievals.

An additional problem discovered during a discussion with AMASS Technical Support Personnel
was that many of the retrievals graphed (Figures 6-1 through 6-9), appear to be from the disk
cache as opposed to the tape library. The prototype team was unable to examine the contents of the
disk cache directly because no adequate method of determining disk cache residency was available
during testing. Utilities to examine and clear the disk cache will be made available in future
releases of AMASS. In generd, file retrievals under 10 seconds probably came from the disk
cache.

Because of these problems, it was difficult to sustain data rates on both hosts. By modifying the
time between requests, and later, by making some changes to the request spawn processing, the
Epoch host provided a relatively stable performance curve. The HP host resisted all attempts to
"normalize" the performance curve. Since neither the HP nor the Sun represent the target
hardware for ECS, it was deemed inefficient to spend an extravagant amount of time attempting to
correct the HP-UX problems.

Request handling for 5 requests per minute initially worked well until the OS anomalies
manifested themselves. The problems with the AMASS performance seemed entirely dependent
on the host computer and OS. There did not appear to be flaws in the product design. Thiswas
illustrated by the AMASS storage and retrieval data using native, FTP, NFS, and RCP methods
(AMASS and Epoch datais included in Appendix A.). The following graphs display the request
handling tests using a 5 requests per minute sampling. The lessons learned from the process
spawn problem were incorporated into the ECS Design.

6-3 813-RD-009-001

500KB - Directory Level 1

! 400
-
=
2 300/
E —8—— AMASS
¥ 200,
= —&o—— Epoch
gy 1007
IE O |
= — W g 90 e

Observations

Figure 6-1. LSR 500 KB File Retrievals - Level 1
500KB - Directory Level 2

wm 400
T o b
=
= 300L
= = —a8— AMASS
&7 2001
= — B Epoch
m 100+
IE
e

Observations

Figure 6-2. LSR 500 KB File Retrievals - Level 2

6-4 813-RD-009-001

500KB - Directory Level 3

tn 120
=
& 100 =8
= -]
E 80 —a—— AMASS
7 60 =
=
-k}
E
S
LR S T = T T = T = > B o N U
— — — —))
Observations
Figure 6-3. LSR 500 KB File Retrievals - Level 3
1MB - Directory Level 1
250
7]
= 2004
=
E 150 —a— AMASS
25
= 100+ —o—— Epoch
L]
= 504
= CRECDpyypy FreonDO e p o FiereP U008 ey rorcen

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHA

— S L N S B o

— o = r] ~f L
Observations

Figure 6-4. LSR 1 MB File Retrievals - Level 1

813-RD-009-001

1MB - Directory Level 2

o
.
=
=
E —a— AMASS
S
= — 0O — Epoch
a
E
|—
S el S o S e T« B o B = 3
~— ~— ~— ~—
Observations
Figure 6-5. LSR 1 MB File Retrievals - Level 2
1MB - Directory Level 3
300
=
= 250 4 a
z 200 | —8— AMASS
7 150
= _
£ 100/ o—— Epoch
@
& 50
I.: o— o —o0—p—p—p—n

O 4 } } } } } } } } 1

1 2 3 4 5 6 7 8 9 10

Observations

Figure 6-6. LSR 1 MB File Retrievals - Level 3

6-6

813-RD-009-001

Time in Seconds

50MB - Directory Level 1

2000
150001
— = AMASS
10004+
—o—— Epoch
50041 n””’" - a
I — ——/
(O | } } } 1
1 2 3 4 5

Observations

Figure 6-7. LSR 50 MB File Retrievals - Level 1

Time in Seconds

50MB - Directory Level 2

2000 __
15004
— = AMASS

10004

c o o o o —&8—— Epoch
500 = 5 4

o ' ' } 1
1 2 3 4 5

Observations

Figure 6-8. LSR 50 MB File Retrievals - Level 2

6-7 813-RD-009-001

Time in Seconds

50MB - Directory Level 3

1200+
10004
soo4t — B AMASS
600% g—=8 B o
400_!_—__.// —8— Epoch
200
O } } } |
1 2 3 a 5

Observations

Figure 6-9. LSR 50 MB File Retrievals - Level 3

6-8 813-RD-009-001

7. Problem & Resolution Summary

Sun / Epoch / HP Optical Jukebox:

+ Coordinated the dispatch of a SUN Service Technician to repair the external 1.3GB disk drive
on the SPARCstation2 (kolobok). The disk was set up as a single partition named / FSMS.

» Diagnosed an optical disk drive failure (Drive 2) on the HP Optical Jukebox. Coordinated the
dispatch of aHP Service Technician to repair the second optical disk drive in the HP Jukebox.

+ Revised the Epoch staging watermarks on both the Epoch server (kolobok) and client (babka)
to remedy a problem with incoming file staging processes locking up due to the inability of
Epoch to prestage enough filesto create adequate space in the target file system.

HP 9000/800 - E30/ AMASS/ Metrum Jukebox:

+ Redlocated disk space on the HP 9000/800 to resolve a problem with a shortage of space in
the /usr file system.

« Applied two software patches to the AMASS software; one to fix the change authorization
script and the other to fix the AMASS manual startup process.

7.1 Epoch Problems

Week of 23 May 94

Epoch Client

While archiving a 400 MB file via the epstage command, the user received a "/file system full”
error message.

This occurred during a operational client to host store operation, not create operation. The host
should not have been full. The client was not full. Is this a watermarking problem? During
epstage, an existing file should be transferred to the host for storage. Therefore, the file system
should not be full. The software did not recover from this error.

Resolution:

The watermarks were originally set very high to facilitate immediate migration from the client to
the host's storage. This caused a secondary problem of not having enough space in the file system
to create a candidate list for migration, prior to filling the file system. The water marks were
lowered to alleviate the problem.

7-1 813-RD-009-001

Epoch Host

While performing an epbsi on agroup of files, the disk file system became full. 236 MB of a
400 MB filefilled the remaining free space in the file system. No error messages were received
and the Epoch product failed to recover and it did not notify the user of aproblem. A "cntl-c" was
performed to terminate the command. A message to the effect of "Could not do EPBSI because
operation would block" was received.

Resolution:

This problem was repeatable but no attempt was made to free space while it was waiting. At
Epoch’ s suggestion, we lowered the watermarks to allow more time (and space in the file system)
for Epoch to create candidate lists prior to filling the file system. This did seem to correct this
problem.

7.2 AMASS Problems

Week of 7 July 1994

July 7, 1994:

Mr. Bruce Clark, of Electronics Data Systems (EDS), requested that Arnold Felix, of R-Squared
(R2), assist with the diagnosis of the read errors received when trying to retrieve files from tapes
(primarily volume 3) loaded in the Metrum RSS-48 jukebox. The following section outlines the
steps taken to investigate and replicate the errors:

1. Thefile system database record ids were verified as valid for the files and directories that
had been experiencing read errors using the AMASS “fileprint” utility.

2. The files from a tape volume 26 that had not experienced errors were successfully
retrieved.

3. The tape volume 3 was returned to an active and on-line state using the AMASS
“volstat” and “volloc” commands.

4. The files from the tape volume 3 that had been experiencing errors were successfully
retrieved. Retrievals were successful from volume 3 into the /tmp/r2 (created for this
test), /userg/bclark, and /fsms2/staging directories.

5. The condition of a power failure during the execution of a Unix “cp” command to copy
files from the /archive/f3_100k/I2 directory (volume 3) was recreated. After the copy
began successfully, the power to the tape drive was interrupted by momentarily turning
off external power to both tape drives. The “cp” command hung suspended until
terminated by issuing a*“cntl-c” from the console keyboard.

7-2 813-RD-009-001

6.

At that time, the system console displayed the following series of Library Input/Output

(LIBIO) daemon error messages consistent with the error messages we had received during
previous DADS testing runs below.

Jul 5 15:44:59 repka LIBIO1 2[537]: <AMASS S 0135> CDB that failed= 0x2b 0x0 0x0 0x0
0x0 0x3 0x11 0x0 0x0 O0x0 0x0

Jul 5 15:44:59 repka LIBIO1 2[537]: <AMASS S 0135> CDB that failed= 0x2b 0x0 0x0 0x0
0x0 0x3 0x11 0x0 0x0 O0x0 0x0

Jul
Jul
Jul
Jul
Jul
Jul
Jul

5 15:44:59 repka LIBIOL_2[537]: <AMASS S 0135> CDB status = 0x400

5 15:44:59 repka LIBIO1_2[537]: <AMASS S 0135> CDB status = 0x400

5 15:44:59 repka LIBIO1 2[537]: <AMASS S 0135> CDB data xfer = 0x0

5 15:44:59 repka LIBIO1_2[537]: <AMASS S 0135> CDB data xfer = Ox0

515:44:59 repka LIBIO1 2[537]: <AMASS S 0138> cdb_status = 0x400

515:44:59 repka LIBIO1 2[537]: <AMASS S 0138> cdb_status = 0x400

5 15:44:59 repka LIBIO1 2[537]: <AMASS W _0012> Read 0 on volume 3 on drive 2

(Jukebox 1) failed

Jul 5 15:44:59 repka LIBIO1_2[537]: <AMASS W_0012> Read 0 on volume 3 on drive 2
(Jukebox 1) failed

The error messages were replicated a second time using the same power failure
simulation procedures.

At this point, it appeared that the source of the drive and jukebox errors, that had been
received during previous DADS testing runs, were associated with the momentary
interruptions of power to the Metrum RSS-48 hardware during the frequent
thunderstorms we had been experiencing.

All of the DADS String 2 hardware was connected to a circuit protected by an
Uninterruptible Power Supply (UPS) in an effort to remove the momentary power
interruptions as a potential source of the problem. The proposed course of action was to
continue to monitor the condition of the hardware during power outages using the
messages issued to the /usr/adm/syslog during interruptions of Alternate Current (AC)
power by the UPS connected to the HP9000/800 server. This action cleared up the
problem.

7-3 813-RD-009-001

Week of 14 July 1994

July 14, 1994:

The AMASS software experienced additional system errors that disabled both drives in the
Metrum RSS-48 jukebox. The following section outlines the steps taken to investigate and
replicate the errors:

1.

The /usr/adm/sysl og files were examined to determine what error had caused AMASS to
stop.

At 0300, the system had attempted to perform a nightly backup of the AMASS index
files. At that time, AMASS failed with a series of Command Descriptor Block (CDB)
errors and was unabl e to return the backup volumeto it’s home slot. The backup failed,
drive 2 wasinactivated, and the AMASS system hung.

That afternoon, an attempt was made to restore AMASS to afunctional state by stopping
and starting AMASS from the Unix command line. At that time, AMASS could not be
inactivated by the “amassstat” command because existing “cp” processes were
attempting to read files from the AMASS system. The inactivation of AMASS 'timed
out' waiting for the hung “cp” processesto complete.

Having failed to inactivate the AMASS system from the Unix command line, the server
was rebooted. The jukebox robot reinitialized, but failed to g ect and return the volumes
in the drives to their respective slotsin the tape drum.

While the server rebooted, awarning message that drive 2 was inactive (as expected) was
posted to the system console. The drive was reactivated and an attempt was made to
copy file D1IAMbaa03423.DAT from volume 2 to /tmp. At that time, the system hung
again. It issued a message to the sydog file that both drives were full, and the driveswere
being marked out of service. Troubleshooting the system was suspended until the
AMASS technical support staff could be contacted to discuss the problems.

July 15, 1994, A M .

1.

In the morning, both drives were in an inactive state, and the “cp” process that had been
started the previous evening was still hung waiting to complete. Upon attempting to
reinitialize drive 1, the robot arm moved, found the drive was full, and inactivated itself
again. An unsuccessful attempt was made to kill the hung “cp” process so the parent
“csh” process was killed orphaning the “cp” process. Drive 2 was then reinitialized and
the robot attempted to load volume 2, and it failed with a'drive full’ error message.

Mr. Felix, the local AMASS technical support representative, was then contacted. He
expressed surprise that the drives had not g ected the loaded volumes upon rebooting the
system. He recommended that the server be shutdown, the Small Computer System
Interface (SCSI) connections between the server and the Metrum jukebox be verified,
and the server restarted. A site visit was also set up for the afternoon.

7-4 813-RD-009-001

An attempt to inactivate the AMASS system from the Unix command line was once
again unsuccessful because the AMASS system was unable to unmount the /archive
mount point (device busy), kill the AMASS daemons (because the file system was still
mounted), or inactivate AMASS using “amassstat” (because the system till had file
requests open).

The server was then halted, the connections on the SCSI bus and the Parallan Single-
ended / Differential converter checked, power to the Parallan converter cycled, and the
system was restarted.

When the system restarted, AMASS started, the jukebox robot ejected the volumes from
the drives and replaced them in their dots, and the system came back up with all previous
“cp” processes terminated. Both drives were still inactivated, so both drives were
successfully reinitialized, without the system issuing any error messages.

The file that had caused the error the day before (D1AMbaa03423.DAT) was copied
from the AMASS system to /tmp successfully.

July 15, 1994, P.M ..

1.

In the afternoon, Mr. Felix arrived to assist with identifying the cause of the earlier
system failures. By thistime, the AMASS system had been up and running and testing
had been able to resume without additional failures.

The syslog error messages and the steps taken to restore AMASS to a functional state
were reviewed with Mr. Felix. Copies of the syslog files captured for further research
were forwarded to the R2 and Advanced Archival Products (AAP) technical support
staff. No definite conclusions regarding the failure of the system on the morning of July
14 were reached.

In the course of checking the sanity of the AMASS system, the AMASS database check
utilities, “dbcheck” and “sysdbchk”, were run. At that time, the diagnostics detected a
corrupted file on volume 12 (a volume on which we had seen previous failures). The
“sysdbchk” error message indicated that the file /archive/f3_100m/D1AMIaa38645.DAT
had been written past the end of the tape on volume 12.

An attempt was made to copy the corrupted file to /tmp and the LIBIO error condition
that had been observed in previous syslog (when attempting to read from volume 12)
was successfully duplicated. The syslog error was:

Jul 15 17:03:53 repka LIBIO1 2[2256]: <AMASS W_0012> Read 0 on volume 12 on drive 2
(jukebox 1) failed

Jul 15 17:03:53 repka LIBIO1 2[2256]: <AMASS W_0012> Read 0 on volume 12 on drive 2
(jukebox 1) failed

Jul 15 17:03:53 repka LIBIO1 2[2256]: <AMASS E 0118> SCSI Sense information dump (in

hex):

7-5 813-RD-009-001

Jul 15 17:03:53 repka LIBIO1 2[2256]: <AMASS E 0118> SCSI Sense information dump (in
hex):

Jul 15 17:03:53 repka LIBIO1 2[2256]: <AMASS E 0118> Sense key: 0xO ASC: 0x0 ASCQ:
0x0

Jul 15 17:03:53 repka LIBIO1 2[2256]: <AMASS E 0118> Sense key: 0xO ASC: 0x0 ASCQ:
0x0

Jul 15 17:03:53 repka LIBIOL_2[2256]: <AMASS_E_0118> 00 00 00 00 00 00 00 00
Jul 15 17:03:53 repka LIBIOL_2[2256]: <AMASS_E_0118> 00 00 00 00 00 00 00 00

5. It was agreed upon to delete the file in order to prevent this condition from generating
further errors. There was no definite conclusion as to why the file was corrupted,
however, Mr. Felix speculated that a failed write during a power failure could have
caused the end of file to be corrupted.

6. Once the corrupted file had been deleted, “dbcheck” and “sysdbchk” were successfully
run against the AMASS file system database.

7.3 AMASS Power Fault Testing

July 26, 1994:
1. A processto move (mv) file /fsms2/staging/ D1AMraad6843.DAT to /archive/f2_5g was
started.

Power to drive 1 was interrupted by pulling the power plug on the back of the drive unit.
AMASS issued the following error messages to the /usr/adm/syslog:

Jul 26 14:12:59 repka LIBIOL 1[482]: <AMASS S 0139> SCTL_INCOMPLETE
Jul 26 14:12:59 repka LIBIOL_1[482]: <AMASS S 0139> SCTL_INCOMPLETE

Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0135> CDB that failed= 0x34 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0

Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0135> CDB that failed= 0x34 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0

Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS_S 0135> CDB status = 0x400
Jul 26 14:12:59 repka LIBIOL_1[482]: <AMASS S 0135> CDB status = 0x400
Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0135> CDB data xfer = 0x0
Jul 26 14:12:59 repka LIBIO1 1[482]: <AMASS S 0135> CDB data xfer = 0x0

7-6 813-RD-009-001

Jul 26 14:12:59 repka LIBIO1 1[482]: <AMASS S 0138> cdb_status = 0x400
Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0138> cdb_status = 0x400

Jul 26 14:12:59 repka LIBIO1 1[482]: <AMASS S 0135> CDB that failed= 0x1 0x0 0x0 Ox0
0x0 0Ox0 0x0

Jul 26 14:12:59 repka LIBIO1 1[482]: <AMASS S 0135> CDB that failed= 0x1 0x0 0x0 Ox0
0x0 0Ox0 0x0

Jul 26 14:12:59 repka LIBIO1 1[482]: <AMASS S 0135> CDB status = 0x400
Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS_S 0135> CDB status = 0x400
Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0135> CDB data xfer = 0x0
Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0135> CDB data xfer = 0x0
Jul 26 14:12:59 repka LIBIO1 1[482]: <AMASS S 0138> cdb_status = 0x400
Jul 26 14:12:59 repka LIBIO1_1[482]: <AMASS S 0138> cdb_status = 0x400

Jul 26 14:13:19 repka LIBSCHED1[481]: <AMASS E_1404> Unable to load volume 25. Drive
2 (jukebox 1) isfull - marked out of service

Jul 26 14:13:19 repka LIBSCHED1[481]: <AMASS E_1404> Unable to load volume 25. Drive
2 (jukebox 1) isfull - marked out of service

4. The AMASS software placed both drivesin an inactive state and placed volume 24 in an
inactive, read-only state.
5. Attempts to kill the “mv” process were unsuccessful, but parent process was
successfully killed.
July 28, 1994
The established recovery procedures were then tried to restore AMASS Operations.
1. Bothdriveswerereinitialized successfully.
2. Anattempt to reinitialize volume 24, using the “volstat” command, failed with the error
message: “VOLSTAT operation failed, AMASS volume currently in use”.
3. Anattempt was made to inactivate AMASS, but because the system thought it had afile
operation still in progress, the “amassstat” command timed-out.
4. An attempt to unmount/archive failed because the system detected an operation
attempting to write afile to /archive/f2_5g and issued a“ device busy” message.
5. An attempt to kill the AMASS daemons with the “killdaemons” command failed
because AMASS was still running.
6. The system was then rebooted.

7-7 813-RD-009-001

10.

11.
12.

Following the system reboot, volume 24 was successfully reinitialized and made
writeable.

The AMASS system was stopped and the "dbcheck” and "sysdbchk™ utilities ran, neither
of which encountered any errors.

AMASS was restarted.

The “mv” operation was reran to move the file /fsms2/staging/D1AMraad6843.DAT to
/archivelf2_5g.

AMASS placed the file on volume 25 and completed the “mv” operation successfully.

Both the AMASS utilities “fileprint” and “volfilelist” show the file on volume 25, with
the correct permissions and file size.

In discussing the failure scenario with Mr. Felix, he indicated that the system behavior was
consistent with their expectations in the event of a catastrophic drive failure. In that situation, the
following steps should occur:

1.
2.

4.

The drive should try to gect the tape for movement to another drive.

The drive would be unable to gject the tape (due to the power loss), and the volume move
operation would fail.

Once the volume move fails, AMASS would be unable to determine whether one or
both drives had failed, and the AMASS software would inactive both drives.

The failed volume would then be placed in an inactive, read-only status.

The primary concern with this failure scenario is the fact that a catastrophic failure of one drive
could potentialy disable an entire Automated Tape Library (ATL). According to Mr. Felix, in
most cases the gjection of a tape volume would be initiated by a soft error (such as an Error
Correction & Control (ECC) error), in which case the drive would still be able to gject the tape.
The hard failure (power interruption during awrite) has the potential for more serious impact on
the entire ATL and AMASS software configuration.

7-8 813-RD-009-001

Appendix A. Prototype Data Points

For brevity the data collected for Prototype 2 will be available as a separate document in the ECS
Library and the World Wide Web.

A-1 813-RD-009-001

This page intentionally left blank.

A-2 813-RD-009-001

Abbreviations And Acronyms

AAP
AC
AMASS
ATL
CDB
cp
CPU
DAAC
DADS
DCE
DID
DR
ECC
ECS
EOSDIS
EPBSI
FIPS
FSMS
FTP
GB
HP
HWM
Inode
KB
LAN
LIBIO
LSR
LWM

Advanced Archival Products
Alternating Current

Archival Management and Storage System
Automated Tape Library

Command Descriptor Block

copy

Central Processing Unit

Distributed Active Archive Center

Data Archive and Distribution System
Distributed Computing Environment
Data Item Description

Disaster Recovery

Error Correction & Control

EOSDIS Core System

Earth Observing System Data and Information System
Epoch Bulk Stage In

Federal Information Processing Standard
File Storage Management Systems

File Transfer Protocol

GigaByte

Hewlett Packard

High Water Mark

Index Node

Kilo Byte

Local AreaNetwork

Library Input/Output

Location Server/Request Router

Low Water Mark

AB-1

813-RD-009-001

MB
MED
MLS
MSRM
mv
NFS
oS
PSWM
R/W

RCP
RPC
SCSI
SDPS
SGI
SPARC
SUN
SVHS
UFS
uiD
UPS
VES

MegaByte

Master File Directory
Multi-Level Staging

Mass Storage Reference Model
move

Network File System
Operating System

Pre-Stage Water Mark
Read/Write

R-Squared

Remote Copy

Remote Procedure Call

Small Computer System Interface
Science Data Processing Segment
Silicin Graphics, Inc.

Single Processor Architecture
Sun MicroSystems

Super Vertical Helical Scan
UNIX File System

Universal Identifier
Uninteruptible Power Supply
Virtual File System

AB-2

813-RD-009-001

Bibliography

Figure 3-1 with some modifications, is taken from: Bach, Maurice, J., The Design of the UNIX
Operating System, Prentice-Hall, 1986, pg. 20.

Stevens, W. Richard, UNIX Network Programming, Prentice-Hall, 1990.

AMASSTMArchival Management and Storage System - Reference Manaual Version 4.2,
Advanced Archival Procuts Inc., April 15, 1994.

EpochServ System Administrator's Guide - Release 6.0, Epoch Systems Inc., August 1993.

EpochMigration SystemAdministrator's Guide, Epoch Systems Inc., March 1993.

BI-1 813-RD-009-001

	1. Introduction
	1.1 Identification
	1.2 Summary
	1.3 Purpose
	1.4 Approach
	1.5 Parent Document
	1.6 Applicable Documents
	2. Hardware Configuration
	3. AMASS 4.2.1
	3.1 Product Summary
	4. EpochServ 6.0.4
	4.1 Product Summary
	4.2 Epoch Configuration
	5. Prototype Implementation
	5.1 Prototype Design
	5.2 FSMS Server Design
	5.3 LSR Server Design
	5.3.1 LSR Responses
	5.4 Problems with the Prototype
	5.5 Testing Procedure
	5.6 LSR Testing
	6. Conclusions
	6.1 Network Limitations
	6.2 Prototype Approach
	6.3 LSR Results
	7. Problem & Resolution Summary
	7.1 Epoch Problems
	7.2 AMASS Problems
	7.3 AMASS Power Fault Testing
	Appendix A. Prototype Data Points
	List of Figures

